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Statistics of aggregates
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Aggregation phenomena of elementary particles into clusters has received considerable
attention during the past few decades. We adopt here a stochastic approach for the modeling
of these phenomena. More precisely, we formulate the problem in the following dynamical
setup: given a population of n discernible atoms partitioned into p discernible (model 1) or
indiscernible (model 2) groups, how does a new atom eventually connect to any of these
p groups forming up a new partition of n + 1 atoms into a certain amount of clusters?
Nucleation is said to occur when the inserted atom does not connect (it nucleates), whereas
aggregation takes place if it does (clusters coalesce). Depending on this local “logic” of
pattern formation, the asymptotic structure of groups can be quite different, in the thermody-
namic limit n→∞. These studies are the main purpose of this work. Understanding these
aggregation phenomena requires first to derive the fragment size distributions (that is, the
number P of fragments, or clusters, and the number Nm of size-m fragments with m consti-
tutive atoms), as a function of the control parameter which is chosen here to be the average
number of atoms 〈N〉. As 〈N〉 approaches infinity, we derive the study of these variables in
the thermodynamic limit n→∞. It is shown, making extensive use of combinatorics, that
two regimes are to be distinguished: the one of weakly connected aggregates where nucle-
ation dominates aggregation and the one of strongly connected aggregates where aggregation
dominates nucleation. In the first (“diluted”) regime, the number of clusters P (n) always
diverges as n→∞, the asymptotic equivalent of which being under control in most cases.
Large deviation results are shown to be available. Concerning Nm(n), distinct behaviours
are observed in models 1 and 2. In the second (“condensed”) regime, the number of groups
P (n) and size-m groups Nm(n) may converge in the thermodynamic limit, with a special
role played by the geometric and Poisson distributions. The asymptotic variables become
observable macroscopically. This work is therefore aimed toward a better understanding of
the fundamentals involved in clusters’ formation processes.

1. Introduction

Aggregation phenomena manifest themselves on a wide variety of physical scales,
from the large structures of the Universe to the elementary particles and are still poorly
understood. The purpose of the recent work [14] was to introduce a natural way of
modeling nucleation–aggregation phenomena of elementary particles into clusters at the
statistical physics’ level, regardless of the nature of their constitutive elements or of the
properties of their binding force. This field has recently received considerable interest,
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in an attempt to understand processes such as coagulation of fine particles or coales-
cence of droplets: although there are many alternative approaches to this question, the
most notable being mean-field population-balance Schmoluchowski’s equations (see,
e.g., [3,10,22]), we adopt here a microscopic approach for the representation of these
phenomena, which avoids the need for certain unknown parameters such as coagulation
and fragmentation rates . . . .

More precisely, we formulated the problem as follows: nucleation–aggregation
phenomena consists of problems where “elementary” particles (atoms) are given the
opportunity of forming “assemblies” (groups or clusters). Inspecting more closely
this problem amounts to asking for the “connection politics” of a new atom when it
“sees” a certain previously-formed group-pattern of n similar atoms. In this approach,
nucleation of a cluster occurs when the inserted atom does not connect at all, whereas
aggregation takes place when it joins any existing cluster, or more. Depending on
this local “logic” of pattern formation, the asymptotic structure of groups (in the
thermodynamic limit n→∞) can be quite different; also the group sizes’ distributions
may vary widely. These asymptotic studies are the main purpose of this work. We first
(section 2) illustrate our ideas on two “monomer addition” models which in fact are
two different and basic “connection logic”. In these simplistic models, the additional
atom, if it connects, connects to a single group: clusters grow by the addition of single
particles. In section 3 we shall identify the model class to work with when clusters
themselves are allowed to aggregate, which should match with more realistic situations.
We shall make an extensive use of the notion of generating (partition) functions from
combinatorics and more precisely of the one of “forests” (ordered or not) of increasing
“trees” [9,12,16,19,21].

Understanding these aggregation phenomena requires first (in section 4) to derive
the fragment size distributions (that is, the number P of fragments, or clusters, and
the number Nm of size-m fragments with m constitutive atoms), as a function of the
control parameter which is chosen here to be the average number of atoms 〈N〉.

As 〈N〉 approaches infinity, aggregates become unobservable and we derive the
study of these variables in the thermodynamic limit n→∞, making extensive use of
singularity analysis techniques [11].

This approach allows one to introduce (in section 5) the notions of weakly con-
nected aggregates where nucleation dominates aggregation and the one of strongly
connected aggregates where the contrary holds true. As conventional wisdom suggests,
it happens that a strong statistical variability holds in the different models introduced;
we shall indicate in which precise sense.

Roughly speaking, in the first (“diluted”) regime, the number of clusters P (n)
always diverges as n → ∞, the asymptotic equivalent of which being under control
in most cases. The speed of divergence fixes the asymptotic behavior of the auxiliary
number of size-m groups variable Nm(n). Large deviation results are shown to be
available. In the second (“condensed”) regime, the number of groups P (n) and size-m
groups Nm(n) may converge in the thermodynamic limit, with a special role played by
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the geometric and Poisson distributions. The asymptotic structure becomes observable
macroscopically.

2. Simple monomer-addition models

Let us start with two basic models: assume a population of n atoms is partitioned
into p distinct non-empty groups. There can be at least one group of size n and at
most n groups of size one. Let thus nj , j = 1, . . . ,n, denote the number of clusters
of size j in such a partition. Of course, if all this is to be consistent,

n∑
j=1

jnj = n (1)

and
n∑
j=1

nj = p, (2)

expressing (respectively) the number of atoms’ (groups’) conservation.
We shall next concentrate on the number of configurations with n (labeled) atoms

and p (unlabeled) clusters.
Let σn(p), p = 1, . . . ,n, denote this quantity.
In order to clarify what these numbers really are, we now discuss the fate of an

additional atom being added up to this structure (in the transition n→ n+ 1):

– This new atom may not “connect” to any of the p existing groups, thereby forming
itself a new group: it nucleates a new cluster.

– This new atom connects preferentially to (no more than) one of the p existing
groups; the question is what group?

In order to answer the above question, let us make more precise the state-space
of our models’ class.

Given a population of n atoms, let Pn denote the number of groups in the
partition, and let (S1(n), . . . ,SPn(n)) be the group sizes’ vector. Of course,

Pn∑
p=1

Sp(n) = n. (3)

Next, in the transition n → n + 1, consider the (random) event Cn = p that
connection Cn of the additional atom is established with group p ∈ {1, . . . ,Pn}: the
indicator function 1Cn=p will thus be one if its argument is true, zero otherwise. Lack
of connection will be represented by the event Cn = 0, connection by the event
Cn > 0.
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We then have the obvious following state-space evolution equations:

S1(n+ 1)
...

Sp(n+ 1)
...
...

SPn+1(n+ 1)
0
...


=

Pn∑
p=1



S1(n)
...

Sp(n) + 1
...

SPn(n)
0
0
...


1Cn=p +



S1(n)
...

Sp(n)
...

SPn(n)
1
0
...


1Cn=0, (4)

Pn+1 = Pn · 1Cn>0 + (Pn + 1) · 1Cn=0. (5)

Equation (4) indicates how to increment the group sizes’ vector whenever a
connection is established, whereas equation (5) is concerned with the (non-decreasing)
number of such groups.

Adopting thus for a while a probabilistic language, we consider the three follow-
ing random self-consistent connection rules of the additional atom giving the (random)
probability, say Q, that connection is established with group p ∈ [1, . . . ,Pn]:

(a) Q(Cn = 0) = 1/(Pn + 1), Q(Cn = p) = 1/(Pn + 1), p = 1, . . . ,Pn,

(b) Q(Cn = 0) = 1/(n + 1), Q(Cn = p) = Sp(n)/(n+ 1), p = 1, . . . ,Pn,

for which, respectively,

(a) Q(Cn = 0) = 1/(Pn + 1), Q(Cn > 0) = Pn/(Pn + 1),

(b) Q(Cn = 0) = 1/(n + 1), Q(Cn > 0) = n/(n+ 1).

Letting thus Q(Pn = p)
def
= Qn(p) denote the probability that the (random) number

of groups is p given a population of n atoms, it follows from the state-space equation (5)
that

(a) Qn+1(p) = 1/p ·Qn(p− 1) + p/(p+ 1) ·Qn(p),

(b) Qn+1(p) = 1/(n + 1) ·Qn(p− 1) + n/(n+ 1) ·Qn(p).

The answer to our question, therefore, lies in the three recurrences on σn(p) we
shall consider here (omitting normalization constants in the transition probabilities),
skipping from the probabilistic language to the one of enumeration

(a) σn+1(p) = σn(p− 1) + pσn(p),
(6)

(b) σn+1(p) = σn(p− 1) + nσn(p),
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with common boundary conditions

σ1(1) = 1,

σn(0) = 0, ∀n > 1, (7)

σn(p) = 0, ∀p > n+ 1, ∀n > 1.

Thus:
In model (a), all existing p groups are equally likely to form a new group (or

not) with the additional atom, independently of the sizes of these p groups.
In model (b), the connection is more likely to occur with a group of large size: the

additional atom behaves gregariously and preferentially moves towards larger groups.
Recurrences (7) identify the numbers’ sequences under concern, namely,

(a) σn(p) = Sn(p), the second kind Stirling’s numbers,

(b) σn(p) = |sn(p)|, the absolute values of the first kind Stirling’s numbers.

Let us also introduce the numbers σn =
∑n

p=1 σn(p), giving the total number of
partitions of n atoms, which are, respectively,

(a) σn = Bn, the Bell numbers,

(b) σn = n!.

Observe also that

σn(p)
def
= #

{
q ∈ {1, . . . ,σn}: Pn(q) = p

}
, p = 1, . . . ,n, (8)

where #{. . .} is to be read as “the cardinal of the set . . . ”.

3. Cluster–cluster aggregation: the generic model

We now come to the question of including clusters’ aggregation into our models:
first note that the hypothesis of section 2 that connection, if established, concerns a
single group is very restrictive, although, as one can guess, far from elementary. In
this sense, these aggregation models are what one may call monomer-addition since
clusters grow by the addition of single particles only – there is no aggregation of two
(or more) larger clusters together. We shall now indicate how to include aggregation
of clusters which appears more realistic in practise.

We first introduce a combinatorial tree-structure which shall prove useful for
our purpose. Suppose j atoms (or nodes) have been labeled {1, . . . , j}. A labeled
increasing tree is a rooted simply connected tree for which labels along any branch
from the root are forced to go in increasing order. The enumeration of such trees has
been undertaken in [2]. Suppose there are (cj)j>1 such trees with j atoms. Introduce
then this sequence’s (exponential) generating function, say t(θ), by

t(θ)
def
=
∑
j>1

cj
j!
θj.
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The main result of these authors is that t(θ) is the unique solution to the au-
tonomous ordinary differential equation

d
dθ
t(θ)

def
= t(θ)′ = g

(
t(θ)
)

(9)

with initial condition t(0) = 0, and for various g such that

g(θ) = 1 +
∑
k>1

gk
k!
θk,

where (gk)k>1is any sequence of integral numbers, gk 6 k!.
Function g is called the branch-generating function. It describes locally the

variability of the edges pointing outwards any node of the tree.
The general unordered increasing tree (or non-plane tree) is, thus, recursively

defined by appending an atom to a set of similar sub-trees. This amounts to choose
g(θ) = eθ , for which gk = 1, k > 1. Note that for such trees, there is no order
distinction between the sub-trees dangling from their common root. Ordered trees,
or plane trees, could be obtained in a similar way, when considering the modified
functional equation (9) with g(θ) = 1/(1 − θ), for which gk = k!, k > 1: for
such trees, there are k! ways to arrange k sub-trees, taking “chirality” into account.
Therefore, modifying the “branch”-generating function g gives rise to a variety of
tree structures implicitly defined by (9). For example, unordered binary trees are
enumerated while using g(θ) = 1 + θ2/2 in the above functional equation, whereas
ordered binary trees can be obtained from g(θ) = 1 + θ2. Linear increasing trees are
enumerated while using g(θ) = 1 + θ and constitute the simplest such structures.

If an explicit solution for the ordinary differential equation (9) exists, we shall call
the model solvable. For example, choosing for g the following particular functions:

1 + θ, (1 + θ)p+1 (with integer p > 1), 1 + θ2, 1 + θ2/2!, 1/(1 − θ), eθ,

yields, respectively, for t(θ),

exp θ− 1, −1+[1−pθ]−1/p, tan θ,
√

2 tan(θ/
√

2), 1−
√

1− 2θ, − log(1−θ).

Considering a forest of increasing trees leads to the generating function et(θ), the
Taylor coefficient of which, say σn, counts the number of forests of increasing trees
that one can form with n atoms, relaxing the connectedness condition for trees [9,12].

3.1. Discernible atoms and indiscernible clusters (model 1)

3.1.1. Partition function for the number of clusters distribution
Next consider the bivariate “marked” exponential generating function

Z1(θ, γ)
def
= eγt(θ). (10)

We shall also let

Z1(θ)
def
= Z1(θ, 1). (11)
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Developing (10),

Z1(θ, γ)
def
= 1 +

∑
n>1

θn

n!
Z1
n(γ)

with

Z1
n(γ)

def
=

n∑
p=1

σn(p)γp.

In this interpretation, σn(p) counts the number of forests made of p increasing
trees that one can form with n atoms, and the Taylor coefficient of Z1(θ), σn =∑n

p=1 σn(p), counts the total number of available configurations.
We now come to our cluster aggregation models.
Differentiating (10) with respect to θ gives, from (9),

∂θZ
1(θ, γ) = γt(θ)′Z1(θ, γ) = γ

∑
k>0

gk
k!

(
t(θ)kZ1(θ, γ)

)
.

This leads to the following recurrences for the functions’ sequence (Z1
n(γ))n>1:

Z1
n+1(γ) = γ

∑
k>0

gk
k!
∂(k)
γ Z1

n(γ),

where ∂(k)
γ indicates derivation with respect to γ (k times).

In terms of the coefficients σn(p) describing Z1
n(γ), this yields the recurrences

σn+1(p) = σn(p− 1) +

n−(p−1)∑
k=1

ap+k−1,pσn(p+ k − 1) (12)

with

ap+k−1,p =
gk
k!

k−1∏
j=0

(p+ j) = gk

(
p+ k − 1

k

)
. (13)

In an alternative way, setting q = p+ k − 1,

σn+1(p) = σn(p− 1) +
n∑
q=p

aq,pσn(q), p = 1, . . . ,n, n > 1, (14)

with

aq,p = gq−(p−1)

(
q

p− 1

)
.

Recurrences (12) or (14) constitute the announced generalization of (6).
We now interpret recurrences (12), (14) in terms of nucleation–aggregation phe-

nomena, as described in section 2.
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In such extended models, indeed, the additional atom in the transition n →
n + 1, when it sees a clusters’ situation with q groups, may connect to k groups

simultaneously, k = 1, . . . , min(K, q), where K
def
= max(k > 1: gk 6= 0) is the

(possibly infinite) order of the branch generating function g(θ). This k-connection
(fusion) occurs with transition probability

Qn,q(k)
def
=

aq,q−(k−1)

(1 +
∑n

p=1 aq,p)
. (15)

By doing so, the number of groups shifts from q = p+ k− 1 to p and decreases
as soon as k > 2 (cluster–cluster aggregation).

Of course, nucleation occurs with probability

Qn,q(0)
def
=

1
(1 +

∑n
p=1 aq,p)

(16)

and still remains possible.
In other words, equation (5) of section 2 has to be replaced by

Pn+1 = (Pn + 1) · 1Kn+1=0 + (Pn −Kn+1 + 1) · 1Kn+1>0, (17)

where Kn+1 is the random variable giving the number of connections with transition
distribution

Q(Kn+1 = k | Pn = q) = Qn,q(k), k > 0. (18)

The coefficients ap+k−1,k in (13) entering in the definition of these probabilities
are now easy to interpret: they are the number of ways that the inserted atom will
select k connection-groups out of p + k − 1 possible, as soon as gk 6= 0, (the term(p+k−1

k

)
), times gk which is the number of ways to realize this k-fusion.

If gk is “large”, the connection probability will be large, so that nucleation is
weak: in the asymptotic n → ∞ there should be “quite few” clusters compared to a
situation where gk is “small” in which nucleation dominates. One of the purpose of
the following is to quantify this mere observation.

Example 1. Let us give some examples that shows that models (a) and (b) actually
are particular cases of this new interpretation.

(a) g(θ) = 1 + θ for which g1 = 1, gk = 0, k > 2, leads to t(θ) = exp θ− 1 and
Z1(θ, γ) = eγ(eθ−1), and from (12) we get (6(a))

σn+1(p) = σn(p− 1) + pσn(p).

(b) g(θ) = eθ for which gk = 1, k > 1, leads to t(θ) = − log(1 − θ) and
Z1(θ, γ) = (1− θ)−γ .

Recurrences (12) obtained while inserting gk = 1, k > 1, in (13) constitute
an alternative interpretation to 6(b). In this case, connection with any number of
preexisting groups is allowed to take place.
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(c) g(θ) = 1 + θ2 for which g1 = 0, g2 = 2, gk = 0, k > 3, leads to t(θ) = tan θ
and Z1(θ, γ) = eγ tan θ;

σn+1(p) = σn(p− 1) + p(p+ 1)σn(p+ 1).

3.1.2. Partition function for fragment size distribution
Thus, the bivariate “marked” exponential generating function of (10)

Z1(θ, γ)
def
= eγt(θ),

where

t(θ)
def
=
∑
j>1

cj
j!
θj

is the unique solution to the autonomous ordinary differential equation

d
dθ
t(θ)

def
= t(θ)′ = g

(
t(θ)
)
,

appears crucial in the apprehension of nucleation–aggregation models.
Observing next that

Z1(θ, γ) =
∏
j>1

(
1 +

∑
l>1

γl

l!

(
cjθ

j

j!

)l)
=
∏
j>1

eγcjθ
j/j!

we conclude that aggregates are obtained from the repetition l times of size-j clusters,
each of which presenting a “variability” cj . It follows that if one intends to understand
the clusters size distributions, one should focus on the “marked” partition function

Z1(θ, γ, γ1, . . . , γj , . . .) =
∏
j>1

(
1 +

∑
l>1

(γγj)l

l!

(
cjθ

j

j!

)l)
= eγ

∑
j>1γjcjθ

j/j! (19)

entering into additional details: here, (γj)j>1 “marks” the number Nj of size-j clusters,
whereas γ “marks” the number of clusters variable, say P , summing up over j: P =∑

j>1Nj , which is in accordance with (2).
Developing,

Z1(θ, γ, γ1, . . . , γj , . . .)
def
= 1 +

∑
n>1

θn

n!
Z1
n(γ, γ1, . . . , γn) (20)

with

Z1
n(γ, γ1, . . . , γn)

def
=

n∑
p=1

γp
∑

Ω(n1, . . . ,nn)
n∏
j=1

γ
nj
j . (21)



196 T. Huillet / Statistics of aggregates

In this formula, the “small” nested sum is to be performed over the integers
n1, . . . ,nn > 0 under the constraints (2),

n∑
j=1

nj = p,
n∑
j=1

jnj = n,

and

Ω(n1, . . . ,nn)
def
= n!

n∏
j=1

(cj)nj

nj!(j!)nj
(22)

is their Boltzmann degeneracy.
A particular partition function of interest in the sequel is from (19)

Z1(θ, γ, γm) = eγ(t(θ)+(γm−1)cmθm/m!) def
= eγt(θ,γm) (23)

with

t(θ, γm)
def
=

(
t(θ) + (γm − 1)

cmθ
m

m!

)
, (24)

which focuses on the size-m clusters only, setting γj = 1 for all indices j except
j = m in equation (19).

3.2. Discernible atoms and discernible clusters (model 2)

3.2.1. Partition function for the number of clusters distribution
We shall next consider the bivariate “marked” exponential generating function

Z2(θ, γ)
def
=

1
1− γt(θ)

(25)

with Z2(θ)
def
= Z2(θ, 1).

Developing,

Z2(θ, γ)
def
= 1 +

∑
n>1

θn

n!
Z2
n(γ)

with

Z2
n(γ)

def
=

n∑
p=1

σ′n(p)γp.

In this interpretation,

σ′n(p)
def
= p!σn(p) (26)
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counts the number of forests made of p discernible increasing trees that one can form

with n discernible atoms; let σ′n
def
=
∑n

p=1 σ
′
n(p). Note that, from (12), there is a

recursive way to generate the sequence σ′n(p), namely,

σ′n+1(p) = pσ′n(p− 1) +

n−(p−1)∑
k=1

a′p+k−1,pσ
′
n(p+ k − 1) (27)

with a′p+k−1,p = pgk/k! this time.
Partition function Z2(θ, γ), therefore, concentrates on configuration numbers of

aggregates when both constitutive atoms and clusters are distinguishable (e.g., labeled).
One expects the conclusions to be highly sensitive to this clusters’ distinguishabil-
ity.

3.2.2. Partition function of fragment size distribution
In a similar way, if one intends to understand the clusters size distributions, one

should consider the “marked” partition function

Z2(θ, γ, γ1, . . . , γj , . . .) =
1

1− γ
∑

j>1 γjcjθ
j/j!

. (28)

Developing,

Z2(θ, γ, γ1, . . . , γj , . . .)
def
= 1 +

∑
n>1

θn

n!
Z2
n(γ, γ1, . . . , γn) (29)

with

Z2
n(γ, γ1, . . . , γn)

def
=

n∑
p=1

γp
∑

Ω′(n1, . . . ,nn)
n∏
j=1

γ
nj
j (30)

and degeneracy system

Ω′(n1, . . . ,nn)
def
= p!n!

n∏
j=1

(cj)nj

nj!(j!)nj
. (31)

A particular partition function of interest is from (28)

Z2(θ, γ, γm) =
1

1− γ(t(θ) + (γm − 1)cmθm/m!)
def
=

1
1− γt(θ, γm)

, (32)

which focuses on the size-m clusters only, setting γj = 1 for all indices j except
j = m in equation (28).

4. Random models for fragment size distributions

We now consider the averaging problem over the configurations.
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Let

Z1(θ, γ, γ1, . . . , γj , . . .) = 1 +
∑
n>1

θn

n!
Z1
n(γ, γ1, . . . , γn)

be the first multivariate generating function introduced before.
Suppose one is able to extract [θn]Z1(θ, γ, γ1, . . . , γj , . . .), or possibly its asymp-

totic equivalent, for large n.
Here,

[θn]Z1(θ, γ, γ1, . . . , γj , . . .) =
1
n!
Z1
n(γ, γ1, . . . , γn)

stands for the coefficient of θn in the power-series expansion of Z1(θ, γ, γ1, . . . , γj , . . .).
Then, upon normalizing,

Φ1
n(γ, γ1, . . . , γn)

def
=

[θn]Z1(θ, γ, γ1, . . . , γj , . . .)
[θn]Z1(θ)

=
Z1
n(γ, γ1, . . . , γn)
Z1
n(1, 1, . . . , 1)

(33)

will stand for the joint probability generating function of the number of clusters vari-
able P , and clusters’ size variables (Nj)nj=1, given the number of atoms is n, as a
conditional probability generating function. In an alternative way,

P1(P = p, N1 = n1, . . . ,Nn = nn | N = n) =
Ω(n1, . . . ,nn)

σn
, (34)

where n1, . . . ,nn > 0 are subject to the constraints
∑n

j=1 nj = p,
∑n

j=1 jnj = n.
Stated differently,

Φ1
n(γ, γ1, . . . , γn)

def
= E1[γPγN1

1 . . . γNnn
∣∣N = n

]
. (35)

In a similar fashion, under model 2, we randomize the variables N , P , (Nj)nj=1
by

Φ2
n(γ, γ1, . . . , γn)

def
= E2[γPγN1

1 . . . γNnn
∣∣N = n

]
with

Φ2
n(γ, γ1, . . . , γn)

def
=

[θn]Z2(θ, γ, γ1, . . . , γj , . . .)
[θn]Z2(θ)

=
Z2
n(γ, γ1, . . . , γn)
Z2
n(1, 1, . . . , 1)

. (36)

4.1. Randomizing the number of atoms: from combinatorics to discrete probability

In general, the form of the fragment size distribution will change drastically as
a function of some macroscopically observable variable, which is identified with a
control parameter. The most natural such variable in our statistical approach is the
number of atoms. Another refinement could add the number of fragments of any size
produced in one aggregation; we shall not follow this path for the sake of simplicity
and shall restrict ourselves to the sole first observable. It now proves useful to discuss
the randomization of the number of atoms variable.
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Suppose labeled (discernible) elementary objects called “atoms” are given the
opportunity to be interconnected in a certain number of ways. By an interconnection
of atoms (or network), we mean an oriented graph between these atoms. Specifying the
admissible type of graph produces a combinatorial model of atoms. An interconnection
model of atoms therefore requires to fix an integer-valued non-decreasing sequence
(sn)n>0 giving the configuration number of n atoms, that is, the number of ways these
n labeled atoms can be interconnected.

These informations are advantageously encapsulated within the exponential par-
tition function

Z(θ) = 1 +
∑
n>1

sn
n!
θn,

as a function of the real variable θ > 0, varying in some definition domain

D+ def
= {θ: 0 6 θ 6 θ0} or D+ def

= {θ: 0 6 θ < θ0}

for some positive real number θ0 (possibly infinite).
This number is the convergence radius of the series Z(θ) in the sense that Z

admits a convergent power series expansion in D+.
Identifying various exponential partition function Z(θ) belongs to the field of

enumerative combinatorics, which is part of the field of graph theory. We shall limit
ourselves here to the partition functions introduced in this paper, together with their
physical meaning, namely,

Z1(θ)
def
= et(θ) = 1 +

∑
n>1

σn
n!
θn (Z = Z1, sn = σn),

in the context of discernible atoms and indiscernible clusters, and

Z2(θ)
def
=

1
1− t(θ)

= 1 +
∑
n>1

σ′n
n!
θn (Z = Z2, sn = σ′n)

in the context of discernible atoms and discernible clusters, respectively.
For such Z, the convergence radius θ0 will be shown to be finite in any case.
Discrete probability and combinatorics are now closely related in the following

way: the sequence of coefficients (sn)n>0 allows one to define the “prior” reference
measure R of the event N = n, to “meet” n discernible atoms as

R(N = n)
def
= R(n) =

sn
n!
. (37)

Note that this measure is not a probability measure, since it is not summable.
It only is a positive “combinatorial” measure of this event. Assume now the exact
number of such interconnected atoms, say N , is unknown to some observer so that
N is assumed random. We shall then search for a “probability” measure of the event



200 T. Huillet / Statistics of aggregates

N = n, say P(N = n)
def
= P(n), which minimizes the Kullback information between

P and R [17,20]:

K(P ‖ R)
def
=
∑
n>0

P(n) log
P(n)
R(n)

(38)

under the constraints∑
n>0

P(n) = 1 and
∑
n>0

nP(n) = x
def
= 〈N〉 > 0, (39)

fixing the non-negative average x of the probability distribution P.
Performing this standard optimization program using Lagrange multipliers yields

P(n)
def
= Pθ(N = n) =

snθ
n

Z(θ)n!
, n > 0, θ ∈ D+, (40)

with θ and x = 〈N〉 related by

θ = e−β and F ′(β) = x, (41)

where F (β)
def
= − logZ(e−β).

Thus, a “good” model for the probability to observe n atoms clearly is the
“exponential” Gibbs family

Pθ(N = n)
def
=

snθ
n

Z(θ)n!
, n > 0, θ ∈ D+, (42)

as a function of an “external” control parameter θ ∈ D+, related to the theoretical
average x of the distribution as just mentioned. This actually is one of the postulates
of statistical physics. Statistics is then concerned with the problem of identifying the
value of θ which fits the best some observation sample (see section 4.1.1).

If Φθ(u)
def
=
∑

n>0 Pθ(N = n)un is now the associated probability generating
function of this probability distribution, we have

Φθ(u)
def
=
Z(θu)
Z(θ)

, (43)

relating partition function to probability generating function.
Specifying Z = Z1, sn = σn and Z = Z2, sn = σ′n yields the definition of two

probabilities for both models, namely,

P1
θ(N = n)

def
=

σnθ
n

Z1(θ)n!
and P2

θ(N = n)
def
=

σ′nθ
n

Z2(θ)n!
,

respectively.
This connects the worlds of combinatorics to the one of discrete probability.

Remark 1. Note that this randomization is only possible in the range 0 6 θ < θ0

(possibly including θ = θ0 if Z(θ0) remains finite there) of the control parameter.
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Otherwise, if θ > θ0 the random variable N becomes degenerate, in the sense
that N =∞ with Pθ probability one, as soon as θ > θ0 (possibly θ > θ0): N becomes
unobservable.

Parameter θ0 is, therefore, a critical parameter, in the sense that a phase tran-
sition takes places there. Both location of the singularity, θ0, and behavior of the
partition functions Z1 and Z2 at the singularity will, therefore, become essential for
full understanding of this phase transition.

If Z(θ0) remains finite, function Z will be said to be regular (and this will be
shown to occur in our case studies). The randomization of the number of atoms still
remains possible at the critical value θ = θ0. This happens although the average
number of atoms 〈N〉 diverges there, from (41), as a consequence of Z ′(θ0) = ∞
(steepness of the derivative). The random variable, defined by its probability generating
function

Φθ0 (u)
def
=
Z(θ0u)
Z(θ0)

at θ = θ0,

can easily be shown in our case to be discrete-stable of parameter 1/2 in the sense
of [23] for which Φθ0(u) = exp(−λ(1 − u)1/2) for some positive λ. For such distrib-
utions, only fractional moments of order strictly less than 1/2 can be shown to exist
as a result of the slow decay of the probability system Pθ0(N = n) ∼

n→∞n
−3/2.

4.1.1. Identifying parameters from sampling
Let us now come to the classical question (in statistics) of identifying the value

of θ which fits the best some observation sample in some sense. We shall recall how
to construct a maximum likelihood estimator of θ.

Substituting parameter β to parameter θ as mentioned above, the distribution of
the number of atoms N , under Pθ, takes the new form

Pβ(n)
def
=
sne−βn

α(β)n!
, n > 0, β ∈ ∆+, (44)

where α(β) = Z(e−β) is the Laplace transform of the sequence (sn/n!)n>0 and

∆+ def
=
{
β: β > β0

def
= − log θ0

}
or ∆+ def

=
{
β: β > β0

def
= − log θ0

}
is its definition domain obtained after an easy distortion of D+. We shall also need

its log-Laplace transform F (β)
def
= − logα(β). This function is negative and concave

on the convex set ∆+. Its Legendre transform

f (x)
def
= inf

β∈∆+

(
βx− F (β)

)
(45)

is well-defined, non-negative and concave on the convex set x > 0. Moreover, f (x) =
xf ′(x) − F (f ′(x)), with Eβ[N ] = F ′(β) = x and β = f ′(x). Symbol x is, thus,
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identified with the average number of atoms Eβ[N ] under Pβ , and the control parameter
β can be derived from x. Distribution Pθ is well-parameterized by x, through

Px(n)
def
=

sne−f
′(x)n

α(f ′(x))n!
, n > 0, x > 0. (46)

Note, also, that f (x) = −K(Px ‖ R) is the opposite of the value of the Kullback
information [13] evaluated at P = Px.

A maximum likelihood estimator of θ, say Θ∗, can, therefore, be derived from
an estimator X∗ of the average number of atoms by Θ∗ = − log f ′(X∗).

Let now (Nk)Kk=1be an independent K-sample of the random variable N . Intro-
ducing the likelihood Vx(N1, . . . ,NK) =

∏K
k=1 Px(Nk) and searching for the value of

x maximizing this likelihood, we get

X∗K =
1
K

K∑
k=1

Nk.

The experimental mean is thus an unbiased, efficient estimator of x, in the sense that
the expectation and variance under Px are Ex[X∗K ] = x, and σ2

x[X∗K ] = −1/(Kf ′′(x)),

with variance function V (x)
def
= −1/f ′′(x) > 0. The quantity −Kf ′′(x) is the Fisher

information of the K-sample.
We also have the law of large numbers

X∗K −→
K→∞

x (47)

with Px probability one, and the central limit theorem

lim
K→∞

Px

(
X∗K − Ex[X∗K ]
σx[X∗K ]

6 y
)

= erf(y), (48)

together with its large deviation counterpart [1]

1
K

log Px
(
X∗K > y

)
−→
K→∞

∫ y

x
(y − z)f ′′(z) dz < 0 (49)

for y > x. The integral appearing in the right-hand side is easily seen to be the

Legendre transform fx(y)
def
= infη(ηy−Fx(η)) with Fx(η) = F (η+ f ′(x))−F (f ′(x)).

Here Fx(η) = − logαx(η) with αx(η) = α(f ′(x) + η)/α(f ′(x)) the Laplace transform
of the probability Px defined from (46). Moreover, it can be checked that −fx(y) =
K(Py ‖ Px) > 0 which is the positive Kullback information between Py and Px.

If 0 < y < x, we get in a similar way

1
K

log Px
(
X∗K 6 y

)
−→
K→∞

∫ x

y
(z − y)f ′′(z) dz < 0.

Example 2. Consider Z2(θ) = 1/(1 − t(θ)) with t(θ) = 1 −
√

1− 2θ which can be
derived, using (9), from the particular choice g(θ) = 1/(1 − θ). In this example,
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α(β)
def
= Z2(e−β) = (1 − 2e−β)−1/2 and F (β)

def
= − logα(β) = (1/2) log(1 − 2e−β).

It follows that F ′(β) = 2e−β/(1 − 2e−β) = x. Hence, upon inverting, β = f ′(x) =

− log(x/(2(1 + x))). As a result, f (x)
def
= xf ′(x) − F (f ′(x)) = −x log(x/2) + (x +

1/2) log(1 + x) > 0 for x > 0 and f ′′(x) = −1/(x(1 + x)) < 0.

With these considerations at hand, it is now possible to discuss the joint distrib-
utions of the random vectors (N ,P ,N1, . . . ,Nj , . . .) under Pθ = P1

θ for model 1 and
Pθ = P2

θ for model 2.

4.2. Joint distributions in the sub-critical region (θ < θ0)

4.2.1. Joint distributions for model 1
Recall from (33) that

Φ1
n(γ, γ1, . . . , γn)

def
=
Z1
n(γ, γ1, . . . , γn)
Z1
n(1, 1, . . . , 1)

=
Z1
n(γ, γ1, . . . , γn)

σn

has been interpreted as the conditional multivariate probability generating function

Φ1
n(γ, γ1, . . . , γn)

def
= E1[γPγN1

1 . . . γNnn
∣∣N = n

]
for the number of clusters variable P and size-j clusters contributions (Nj)nj=1. Mul-
tiplying by the probability

P1
θ(N = n)

def
=

σnθ
n

Z1(θ)n!
, n > 0,

that n atoms are being observed and summing up over n > 0 yields now the joint
probability

Φ1
θ(u, γ, γ1, . . . , γn)

def
= E1

θ

[
uNγPγN1

1 . . . γNnn
]

=
∑
n>0

P1
θ(N = n)unΦ1

n(γ, γ1, . . . , γn) (50)

as a function of the control parameter θ.
Hence,

Φ1
θ(u, γ, γ1, . . . , γj , . . .)

def
=

1
Z1(θ)

∑
n>0

1
n!

(θu)nZ1
n(γ, γ1, . . . , γn)

=
Z1(θu, γ, γ1, . . . , γj , . . .)

Z1(θ)
(51)

from (20). In explicit form,

Φ1
θ(u, γ, γ1, . . . , γj , . . .) = eγ

∑
j>1γjcj (θu)j/j!/e

∑
j>1cjθ

j/j!

= e
∑
j>1(γγjuj−1)cjθj/j! (52)

from (19).
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This formulation is full of interesting informations.
Zooming, for example, on size-m clusters yields, taking γj = 1, for all j but m,

Φ1
θ(u, γ, γm)

def
= E1

θ

[
uNγPγNmm

]
= exp

(
−t(θ) + γ

{
cm(θu)m

m!
(γm − 1) + t(uθ)

})
(53)

after some easy computations.
In particular,

Φ1
θ(1, 1, γm)

def
= E1

θ

[
γNmm

]
= exp

(
(γm − 1)

cmθ
m

m!

)
(54)

is the probability generating function of a Poisson variable, with intensity E1
θ[Nm] =

cmθ
m/m! and standard deviation σ1

θ[Nm] = (cmθm/m!)1/2. Another marginal distri-
bution is

Φ1
θ(1, γ, 1)

def
= E1

θ

[
γP
]

= exp
(
(γ − 1)t(θ)

)
, (55)

which is the probability generating function of a Poisson variable, with intensity
E1
θ[P ] = t(θ) =

∑
j>1 cjθ

j/j!, and

Φ1
θ(u, 1, 1)

def
= E1

θ

[
uN
]

= exp
(
t(uθ)− t(θ)

)
(56)

is a Gibbs variable with mean E1
θ[N ] = θt

′(θ) and standard deviation σ1
θ[N ] =

(θt′(θ) + θ2t
′′(θ))1/2.

Joint and conditional informations are also available, for example,

Φ1
θ(1, γ, γm)

def
= E1

θ

[
γPγNmm

]
= exp

(
−t(θ) + γ

{
(γm − 1)

cmθ
m

m!
+ t(θ)

})
. (57)

As a result,

E1
θ

[
γPγNmm

]
=
∑
p>0

t(θ)pγpe−t(θ)

p!

{
(γm − 1)

cmθ
m

m!t(θ)
+ 1

}p
=
∑
p>0

P1
θ(P = p)

{
(γm − 1)

cmθ
m

m!t(θ)
+ 1

}p
.

Hence,

E1
θ

[
γNmm

∣∣P = p
]

=

{
(γm − 1)

cmθ
m

m!t(θ)
+ 1

}p
is the probability generating function of a binomial variable whose mean is E1

θ[Nm |
P = p] = pθ(m)p, with pθ(m)

def
= E1

θ[Nm]/E1
θ[P ] = cmθ

m/(m!t(θ)).
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4.2.2. Joint distributions for model 2
In a similar way, from (36),

Φ2
n(γ, γ1, . . . , γn)

def
=
Z2
n(γ, γ1, . . . , γn)

σ′n
= E2[γPγN1

1 . . . γNnn
∣∣N = n

]
is the conditional multivariate probability generating function for the number of clus-
ters variable P and the number of size-j clusters variables (Nj)nj=1 given N = n.
Multiplying by the new probability

P2
θ(N = n)

def
=

σ′nθ
n

Z2(θ)n!
, n > 0,

that n atoms are being observed and summing up over n > 0 yields now the joint
probability

Φ2
θ(u, γ, γ1, . . . , γn)

def
= E2

θ

[
uNγPγN1

1 . . . γNnn
]

=
∑
n>0

P2
θ(N = n)unΦ2

n(γ, γ1, . . . , γn) (58)

as a function of the control parameter θ.
Hence,

Φ2
θ(u, γ, γ1, . . . , γj , . . .) =

Z2(θu, γ, γ1, . . . , γj , . . .)
Z2(θ)

(59)

from (29) and, in explicit form,

Φ2
θ(u, γ, γ1, . . . , γj , . . .) =

1− t(θ)
1− γ

∑
j>1 γju

jcjθj/j!
(60)

from (28).
Zooming on size-m clusters yields, taking γj = 1, for all j but m,

Φ2
θ(u, γ, γm)

def
= E2

θ

[
uNγPγNmm

]
=

1− t(θ)
1− γt(θu)− γ(cm(θu)m/m!)(γm − 1)

(61)

after some easy computations.
In particular,

Φ2
θ(1, 1, γm)

def
= E2

θ

[
γNmm

]
=

1− t(θ)
1− t(θ)− (cmθm/m!)(γm − 1)

(62)

is the probability generating function of a geometric variable with mean Eθ[Nm] =
cmθ

m/(m!(1 − t(θ))),

Φ2
θ(1, γ, 1)

def
= E2

θ

[
γP
]

=
1− t(θ)

1− γt(θ)
(63)
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is the probability generating function of a geometric variable with intensity E2
θ[P ] =

t(θ)/(1 − t(θ)), and

Φ2
θ(u, 1, 1)

def
= E2

θ

[
uN
]

=
1− t(θ)

1− t(θu)
(64)

is a Gibbs variable with mean E2
θ[N ] = θt(θ)′/(1 − t(θ)).

4.3. Conditional distributions in the thermodynamic limit n→∞: the super-critical
region θ > θ0

As was noted before, the random variable N becomes degenerate, in the sense
that N = ∞ with probability Pθ one, as soon as θ > θ0. The reasonable approach
for the understanding of aggregates in this region of the control parameter is, thus,
to extract and evaluate the asymptotic shape of the θ – Taylor coefficients of com-
plicated generating functions, such as Z(θ, γ, γm) (with Z = Z1 or Z = Z2), where
Z1(θ, γ, γm) = eγt(θ,γm) and Z2(θ, γ, γm) = 1/(1 − γt(θ, γm)) from (23) and (32) with

t(θ, γm)
def
= t(θ) + (γm − 1)cmθm/m! from (24).

The number of groups, P (n), and the number of size-m groups, Nm(n), variables
are now to be understood conditionally to N = n, with n becoming large. This
amounts to search for an asymptotic equivalent to Φn(γ, γm) in the thermodynamic
limit n → ∞ upon normalizing. The techniques to be employed to perform this
program derive from singularity analysis.

We first recall a partial result of [11] before discussing the way it particularizes
to our situation.

Singularity analysis result
Let Z(θ) be any analytic function in the indented domain defined by

D =
{
θ: |θ| 6 θ1,

∣∣Arg(θ − θ0)
∣∣ > π/2 − η

}
,

where θ0, θ1 > θ0, and η are positive real numbers. Assume that, with σ(x) = xα×
logβ x, α and β any real number (the singular exponents), we have

Z(θ) ∼ K1 +K2σ

(
1

1− θ/θ0

)
as θ→ θ0 in D, (65)

for some real constants K1 and K2.
Then:
If α /∈ {0,−1,−2, . . .}, the Taylor coefficients of Z(θ) satisfy

[θn]Z(θ) ∼ K1 +K2θ
−n
0
σ(n)
n

1
Γ(α)

as n→∞, (66)

where Γ(α) is the Euler function. Z(θ) presents an algebraic-logarithmic singularity
at θ = θ0.
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If α ∈ {0,−1,−2, . . .}, the singularity θ = θ0 is purely logarithmic and

[θn]Z(θ) ∼ K1 +K2βθ
−n
0

σ(n)
n logn

(
1
Γ

)′
(α) as n→∞, (67)

involving the derivative of the inverse of the Euler function at α.
Thus, for algebraic-logarithmic singularities, the asymptotic of the Taylor coeffi-

cients can be read from the singular behavior of the partition function under study.

Remark 2. If Z(θ) is now replaced by Z(θ, γ, γm) for Z = Z1 or Z = Z2, where
(γ, γm) are considered as perturbation parameters, the above theorem applies with both
the singularity location θ0 possibly replaced by θ(γ, γm) and the singular exponents α
(and β) possibly replaced by α(γ, γm) (and β(γ, γm)). It shall of course prove useful
to understand how these parameters modify the singular behavior of Z(θ) = Z(θ, 1, 1)
in the two different models. This is the object of section 5.

5. Asymptotic of the variables Nm(n) and P (n) in the thermodynamic limit

In order to answer the question, one first has to understand the singularity of
the generating functions for trees t(θ) and t(θ, γm), and afterwards, by composition of

singularity, the ones of Z1(θ, γ, γm)
def
= eγt(θ,γm) and Z2(θ, γ, γm)

def
= 1/(1 − γt(θ, γm))

will follow. The main source of singularity in our problem mainly stems from the

generating functions for trees t(θ) and t(θ, γm)
def
= t(θ) + (γm − 1)cmθm/m!. Two

types of singularity are to be distinguished here:

Weakly connected aggregates

t(θ) diverges at θ
def
= θ1. This will happen if the branch generating function g is

an entire function: we shall discuss two examples, namely g polynomial (of maximal
degree d > 2) and g dominated by an exponential, that is, g ∼ θM exp(−θ), as
θ →∞, for some integral number M > 1. The singularity type of function t(θ) will
be shown to be algebraic with parameter α = 1/(d−1) > 0 in the first case and purely

logarithmic in the second case. In both cases, however, t(θ) diverges at θ
def
= θ1.

In such aggregates, the sequence (gk)k>1 grows “slowly” (i.e., not faster than
kM , for some integer M in our examples), which justifies the entry weakly connected
aggregates from the combinatorial interpretation of these coefficients of section 3.
Connection is weak, so that nucleation dominates: one, therefore, expects the number
of groups to be large. This will be shown to occur in the sense that

1
Λn

P (n)→ τ ′(0) > 0

with P1 and P2 probability one, from the law of large numbers. We shall indicate how
to determine the divergence scales Λn (Λn → ∞ as n → ∞) in the different cases
discussed above: Λn grows slower than n in model 1, so that no finite-size groups
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are present asymptotically; on the contrary, Λn grows like n in model 2, so that a
non-trivial finite-size group structure emerges. Also, large deviation results will be
shown to hold generically, and we shall compute some large deviation rate functions.

Strongly connected aggregates
t(θ) is defined and finite at θ = θ1. This will happen if g itself has a singularity,

say t0 > 1, at finite distance of the origin. In this case the type of singularity of
t(θ) will always be algebraic with parameter α = −1/2 < 0 (branch point) [18], as a
result of the implicit function theorem. As a generic example, we shall treat the case
g(θ) = 1/(1− P (θ)), where P (θ) is a degree-L > 2 polynomial with non-negative
Taylor coefficients, such that P (0) = P

′
(0) = 0 and P (1) < 1. More precisely,

P (θ) =
L∑
l=2

εl
l!
θl with εl ∈ {0, 1}.

In this case, the singularity of g is located at t0 > 1, as a result of the Perron–Frobenius
theorem for primitive matrices.

In such aggregates, the sequence (gk)k>1 grows much faster (i.e., gk ∼ k!t−k0
as k → ∞), which justifies the entry strongly connected aggregates from the combi-
natorial interpretation of these coefficients of section 3. Connection is strong, so that
nucleation no longer dominates: one, therefore, expects the number of groups to be
“smaller”. Actually, it will be shown to occur in the sense that for model 1,

P (n)→ P (∞) (in law)

as n → ∞, for some limit distribution P (∞), that will be shown to be Poisson-like.
A similar behavior is observed for Nm(n).

However, concerning the variable P (n), in the context of model 2, it still con-
tinues to diverge in the sense that

1
Λn

P (n)→ τ ′(0) > 0

with P2 probability one, for some divergent with n series Λn. In order that a limiting
distribution P (∞) exists, such that

P (n) −→
n→∞P (∞)

holds in law, the condition that t0 > 1 has to be violated and replaced by t0 < 1,
which means that the sequence (gk)k>1 has to grow faster than k!: we shall call these
aggregates very strongly connected.

5.1. Singularity analysis of the generating functions for trees

Let us first start by the θ-singularity analysis of the series t(θ) and t(θ, γm).
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5.1.1. Weakly connected aggregates
(a) The case g polynomial [2]: Suppose g(θ) = 1 +

∑d
k=1 (gk/k!)θk, d > 2.

Rewrite (9) as

θ =

∫ t(θ)

0

dθ′

g(θ′)
. (68)

Clearly, t(θ) explodes (diverges) at finite distance θ1 of the origin. Thus, the
singularity of t(θ) is located at

θ1 =

∫ ∞
0

dθ′

g(θ′)
. (69)

Hence,

θ1 − θ =

∫ ∞
t(θ)

dθ′

g(θ′)
∼

θ′→∞

1
gd(d− 1)

t(θ)1−d

and

t(θ) ∼ K2

(
1

1− θ/θ1

)1/(d−1)

as θ→ θ1 (70)

with K2 = (gdθ1(d− 1))1/(1−d).
The singularity of t(θ) is purely algebraic of parameter α = 1/(d − 1) > 0. It

follows from (66) that

[θj]t(θ) ∼ K2θ
−j
1 j1/(d−1)−1 1

Γ(1/(d − 1))
as j →∞. (71)

(b) The case g ∼
θ→∞

θMeθ , for some integer M > 1: This happens when g(θ)
def
=

gM (θ), recursively defined by gm+1(θ) = 1 + θg′m(θ), m = 0, . . . ,M − 1, with
g0(θ) = eθ. In this case, g(θ) = 1 +

∑
k>1 (kM/k!)θk, and gk = kM , k > 1, has a

polynomial growth behavior.
Performing the same analysis as above,

θ1 − θ =

∫ ∞
t(θ)

dθ′

g(θ′)
∼

θ′→∞
t(θ)Me−t(θ),

so that

t(θ) ∼ − log(1− θ/θ1) as θ → θ1 (72)

with θ1 > 1/e again given by (69). It follows from (67)

[θj]t(θ) ∼ θ−j1 j−1 as j →∞. (73)
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Remark 3. The generating function t(θ, γm) = t(θ)+(γm−1)cmθm/m! is obtained by
superimposing a degree-m monomial to function t(θ). Thus, in the case just discussed
where t(θ) diverges at critical value θ = θ1 the singular behavior of t(θ, γm) matches
the one of t(θ): there is no influence of parameter γm neither on the location θ1 nor
on the singular exponents α and β of the singular expansion of t(θ).

5.1.2. Strongly connected aggregates
(a) The case g rational: Suppose g(θ) = 1/(1 − P (θ)), where P (θ) =∑L

l=2 (εl/l!)θl with εl ∈ {0, 1}, eventually aperiodic. This polynomial is the char-
acteristic polynomial of its companion matrix. This matrix has non-negative entries,
all bounded by one; it can easily be shown to be irreducible (actually, primitive
if P (θ) is aperiodic), so that from the Perron–Frobenius theorem, P (θ) = 1 has a
unique (algebraically simple) real solution θ = t0 (the inverse of the spectral radius
of the companion matrix) such that all other roots are (strictly) outside the circle of
radius θ = t0. From its particular shape, P (1) < 1, so that ∞ > t0 > 1. More-
over,

g(θ) ∼ 1

t0P
′
(t0)

(
1

1− θ/t0

)
as θ → t0,

so that

gk ∼
1

t0P
′
(t0)

k!t−(k+1)
0 as k →∞,

from (66). Therefore, gk ∼ Kkk+1/2(et0)−k as k → ∞, for some constant K and
from the Stirling’s formula. These coefficients, therefore, grow much faster than in
any weakly connected aggregates: aggregation is “stronger”.

In this situation, t(θ) is undefined beyond the value θ1, at finite distance of the
origin, although it remains finite there: t(θ1) < ∞. Thus, the singularity of t(θ) is
located at

θ1 =

∫ t0

0

dθ′

g(θ′)
> 1/e. (74)

Hence,

θ1 − θ =

∫ t0

t(θ)

dθ′

g(θ′)
.

Inverting this singularity, we get the “branch-point” behavior [18]:

t(θ) ∼ t0 −
(

2θ1

(−1/g)′(t0)

)1/2( 1
1− θ/θ1

)−1/2

as θ→ θ1. (75)
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The singularity of t(θ) is algebraic of parameter α = −1/2 < 0. It follows
from (66) that

[θj]t(θ) ∼ t0 −
(

2θ1

(−1/g)′(t0)

)1/2

θ−j1 j−3/2 1
Γ(−1/2)

as j →∞ (76)

and cj
def
= j![θj]t(θ) ∼ Kjj−1(eθ1)−j as j →∞, from Stirling’s formula.

Remark 4. The generating function t(θ, γm) = t(θ)+(γm−1)cmθm/m! is obtained by
superimposing a degree-m monomial to function t(θ). Thus, in the case just discussed
where t(θ) converges at critical value θ = θ1, the singular behavior of t(θ, γm) now
sensibly differs from the one of t(θ) in the following sense: there still is no influence
of parameter γm neither on the location θ1 nor on the singular exponents α = −1/2 of
the singular expansion of t(θ) (75), but the value t(θ1) = t0 at the singularity θ = θ1

is now “polluted” by γm and should be replaced by

t(θ1, γm)
def
= t0(γm) = t0 + (γm − 1)

cmθ
m
1

m!
. (77)

5.2. Singularity analysis of the partition function Z1(θ, γ, γm)

We shall now study, in these various cases, the type of singularity one is in right
to expect, concerning the generating functions Z1(θ, γ, γm) and Z2(θ, γ, γm), simply
by composition of singularities. This will allow us to derive asymptotic information
on both the number of groups P (n) and number of size-m groups Nm(n) information
encapsulated within (22) and (25), conditionally to n, and in the limit n→∞.

5.2.1. Weakly connected aggregates
(a) The case g polynomial: Recall from (70) that

t(θ) ∼ K2

(
1

1− θ/θ1

)1/(d−1)

as θ → θ1;

the singularity of t(θ) is purely algebraic of parameter α = 1/(d − 1) > 0. More-
over, t(θ, γm) has the same singular expansion, with no pollution of parameter γm.

Therefore, Z1(θ, γ, γm)
def
= eγt(θ,γm) presents an essential singularity at θ = θ1, with

no influence of γm. When d = 2, it follows, from a saddle point analysis [15] that

[θn]Z1(θ, γ, γm) ∼
n→∞ θ

−n
1

exp(K2γ/2)
2
√
π(K2γ)−1/4

exp
(
2
√
K2γn

)
. (78)

Of course,

[θn]Z1(θ) ∼
n→∞ θ

−n
1

exp(K2/2)

2
√
π(K2)−1/4

exp
(
2
√
K2n

)
, (79)
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so that, after normalization,

Φ1
n(γ, γm)

def
=

[θn]Z1(θ, γ, γm)
[θn]Z1(θ)

−→
n→∞

exp(K2(γ − 1)/2)

γ−1/4
exp
(
2
√
K2n(

√
γ − 1)

)
, (80)

which is independent of γm.
As a first conclusion, taking γ = 1 in (80) yields limn→∞Φ1

n(1, γm) = 1. Thus,
given N = n, for any finite group size m held fixed

Nm(n) −→
n→∞ 0 (81)

with P1 probability one.
Concerning the number of groups variable, obtained while setting γm = 1,

Φ1
n(γ, 1)1/Λn −→

n→∞ρ
1(γ, 1)

def
= ρ1(γ) (82)

with

ρ1(γ) = exp
(
2
√
K2(
√
γ − 1)

)
. (83)

Here Λn =
√
n. The mean and variance of the number of clusters random

variable diverge algebraically. (Actually, for any d, the divergence rate can be shown
to be the power-law Λn = n1/d.) As a result, the number of groups, given N = n, say
P (n), grows like Λn = n1/d. The number of atoms per group, that is, the group-size
variable n/P (n), tends to infinity, which is consistent with the result stated in (81):
there is no finite-size groups asymptotically!

(b) The case g ∼
θ′→∞

θMeθ , for some integer M > 1: Note from (72) that t(θ) ∼
− log(1− θ/θ1) as θ→ θ1; the singularity of t(θ) (and t(θ, γm)) is purely logarithmic.

Therefore, Z1(θ, γ, γm)
def
= eγt(θ,γm) presents an exp–log type singularity at θ = θ1. It

follows that

Z1(θ, γ, γm) ∼
θ=θ1

(
1

1− θ/θ1

)γ
,

independent of γm. The singularity of Z1(θ, γ, γm) is algebraic, with parameter γ. It
follows from the singularity analysis result (67) that

[θn]Z1(θ, γ, γm) ∼
n→∞ θ

−n
1
nγ

n

1
Γ(γ)

. (84)

Of course,

[θn]Z1(θ) ∼
n→∞ θ

−n
1 , (85)
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so that

Φ1
n(γ, γm)

def
=

[θn]Z1(θ, γ, γm)
[θn]Z1(θ)

∼
n→∞

1
Γ(γ)

exp
(
− logn(1− γ)

)
, (86)

independent of γm.
Concerning Nm(n), similar conclusions as equation (81) hold.
Concerning the number of groups variable,

Φ1
n(γ, 1)1/Λn −→

n→∞ρ
1(γ, 1)

def
= ρ1(γ) (87)

with

ρ1(γ) = exp
(
−(1− γ)

)
. (88)

This is the probability generating function of a standard Poisson variable.
Here Λn = logn. The mean and variance of the number of clusters random

variable diverge in a logarithmic way.
Thus, an infinite cluster regime is observed for weakly connected aggregates

under P1: there are no finite-size groups and the number of groups diverges with the
number n of atoms but slower than n (like n1/d or like logn).

5.2.2. Strongly connected aggregates
(a) The case g rational: Note from (75) that

t(θ, γm) ∼ t0(γm)−
(

2θ1

(−1/g)′(t0)

)1/2( 1
1− θ/θ1

)−1/2

as θ→ θ1,

with t0(γm) = t0 + (γm − 1)cmθm1 /m!; the singularity of t(θ, γm) is purely algebraic

of parameter α = −1/2 < 0. Therefore, Z1(θ, γ, γm)
def
= eγt(θ,γm) also presents an

algebraic type singularity (with parameter α = −1/2) at θ = θ1.
Indeed,

Z1(θ, γ, γm) ∼
θ=θ1

eγt0(γm)
(

1− γ
(

2θ1

(−1/g)′(t0)

)1/2( 1
1− θ/θ1

)−1/2)
.

It follows from the singularity analysis result (66) that

[θn]Z1(θ, γ, γm) ∼
n→∞−γeγt0(γm)

(
2θ1

(−1/g)′(t0)

)1/2 θ−n1 n−3/2

Γ(−1/2)
. (89)

As a result,

Φ1
n(γ, γm)

def
=

[θn]Z1(θ, γ, γm)
[θn]Z1(θ)

∼
n→∞γ exp

(
γt0(γm)− t0

)
. (90)

Hence,

Φ1
n(γ, γm) −→

n→∞ρ
1
∞(γ, γm)

def
= Φ1

∞(γ, γm) (91)
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with

Φ1
∞(γ, γm) = γ exp

(
(γ − 1)t0 + γ(γm − 1)

cmθ
m
1

m!

)
(92)

from (77).
The random variables P (n) and Nm(n) converge in law this time.
Setting γm = 1, Φ1

∞(γ, 1) = γ exp(γ − 1)t0 appears to be the probability gener-
ating function of a (shifted) Poisson variable for P (n), with mean and variance 1 + t0.
If γ = 1,

Φ1
∞(1, γm) = exp

(
(γm − 1)

cmθ
m
1

m!

)
yields a Poisson probability generating function for Nm(n), with intensity cmθ

m
1 /m!

(compare with (54)).

5.3. Singularity analysis of the partition function Z2(θ, γ, γm)

We shall now show that the conclusions to be drawn are significantly different
under probability P2.

5.3.1. Weakly connected aggregates
(a) The case g polynomial: Note from (70) that

t(θ) ∼ K2

(
1

1− θ/θ1

)1/(d−1)

as θ→ θ1;

the singularity of t(θ) is purely algebraic of parameter α = 1/(d−1) > 0. The function
t(θ) diverges as θ → θ1.

The singularity of Z2(θ, γ, γm)
def
= 1/(1 − γt(θ, γm)) differs now sensibly from

the one of t(θ) (and thus t(θ, γm)) in the sense that both location and singular exponent
are corrupted by the variables (γ, γm) this time.

More precisely, Z2(θ, γ, γm)
def
= 1/(1 − γt(θ, γm)) presents an algebraic singu-

larity (of parameter α = 1) at θ
def
= θ(γ, γm) < θ1: the singularity has been shifted to

the left.
Here θ(γ, γm) is well-defined implicitly by

t
(
θ(γ, γm), γm

) def
= 1/γ. (93)

Near this new singularity θ = θ(γ, γm),

Z2(θ, γ, γm) ∼ 1

γθ(γ, γm)t′(θ(γ, γm), γm)

1
(1− θ/θ(γ, γm))

; (94)
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hence, with t′(θ(γ, γm), γm) standing for the partial derivative w.r. to θ of t(θ, γm) at
θ = θ(γ, γm),

[θn]Z2(θ, γ, γm) ∼
n→∞

1

γθ(γ, γm)t′(θ(γ, γm), γm)
θ(γ, γm)−n, (95)

so that, upon normalizing,

Φ2
n(γ, γm)

def
=

[θn]Z2(θ, γ, γm)
[θn]Z2(θ)

∼
n→∞

θ(1, 1)t′(θ(1, 1), 1)

γθ(γ, γm)t′(θ(γ, γm), γm)

(
θ(1, 1)
θ(γ, γm)

)n
. (96)

Stated differently,

Φ2
n(γ, γm)1/Λn −→

n→∞ρ
2(γ, γm) (97)

with

ρ2(γ, γm)
def
=

θ(1, 1)
θ(γ, γm)

. (98)

Here Λn = n. The mean and variance of the number of clusters random variables
diverge linearly with n.

Setting γm = 1, it should be observed, due to (9) and (93), that θ(γ)
def
= θ(γ, 1)

is defined explicitly from the branch generating function g by

θ(γ) =

∫ 1/γ

0

dθ′

g(θ′)
. (99)

Function ρ2(γ, 1) can, therefore, be quite intricate, in general not available in
explicit form, although this may happen as the following example show.

Example 3. If g(θ) = 1+θ2, t(θ) = tan θ, Z2(θ, γ, 1) = 1/(1−γ tan θ) and θ(γ, 1) =
arctan(1/γ), function ρ2(γ, 1) is explicitly given by ρ2(γ, 1) = π/(4 arctan(1/γ)).

(b) The case g ∼
θ→∞

θMeθ, for some integer M > 1: Recall from (72) that

t(θ) ∼ − log(1 − θ/θ1) as θ → θ1; t(θ) also diverges at θ1 in a logarithmic way this
time. The above results (93)–(99) are still valid, the only shape of ρ2(γ, γm) changing
in a drastic way.

Example 4. If g(θ) = exp θ, t(θ) = − log(1 − θ), Z2(θ, γ, 1) = 1/(1 + γ log(1 − θ))
and θ(γ, 1) = 1− exp(−1/γ), function ρ2(γ, 1) is explicitly given by

ρ2(γ, 1) =
(
1− exp(−1)

)/(
1− exp(−1/γ)

)
.
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5.3.2. Strongly connected aggregates
(a) The case g rational: Recall from (75) that

t(θ, γm) ∼ t0(γm)−
(

2θ1

(−1/g)′(t0)

)1/2( 1
1− θ/θ1

)−1/2

as θ→ θ1;

the singularity of t(θ, γm) is purely algebraic of parameter α = −1/2 < 0. In the

singularity analysis of function Z2(θ, γ, γm)
def
= 1/(1 − γt(θ, γm)) the value of t0(γm)

appears critical, in particular its relative position with respect to one. Since t0 > 1 for
strongly connected aggregates, the conclusions are quite similar to the ones of weakly
connected aggregates. Indeed, Z2(θ, γ, γm) still presents an algebraic singularity (of
parameter α = 1) at θ = θ(γ, γm) < θ1, which is defined in some open neighborhood
of γ = γm = 1: the singularity is again to be shifted to the left. Function θ(γ, γm) is
still defined by (93) but condition t0(γm) > 1/γ defines an admissible sub-domain of
[0, 1]2 in the parameter space (γ, γm), including the point (1, 1). This results from the
fact that t(θ, γm) is finite at θ = θ1 this time.

Thus, the range of (γ, γm) is restricted to this sub-domain, which is the most
notable difference with the previous situation.

The above results (93)–(99) are still valid, the only shape of ρ2(γ, γm) changing
in a drastic way. In particular,

Φ2
n(γ, γm)1/Λn −→

n→∞ρ
2(γ, γm) (100)

with

ρ2(γ, γm) =
θ(1, 1)
θ(γ, γm)

(101)

with θ(γ, γm) still defined by (93), but for (γ, γm) now restricted to satisfy t0(γm) >
1/γ.

Here Λn = n. The mean and variance of the number of clusters random variable
continue to diverge linearly: the convergence in law phenomenon observed for strongly
connected aggregates in section 5.2.2 no longer holds!

Example 5. If g(θ) = 1/(1 − θ2/2), one has

t(θ) =
(
−3θ +

(
9θ2 − 8

)1/2)1/3
+
(
−3θ −

(
9θ2 − 8

)1/2)1/3
,

with t0 =
√

2 and θ1 = (2/3)
√

2. Hence, θ(γ, 1) = 1/γ−1/(6γ3). Function ρ2(γ, 1) is
the function explicitly given by ρ2(γ, 1) = 5γ3/(6γ2 − 1), which should be considered
on the sub-domain γ ∈ [1/

√
2, 1] only.

5.3.3. Very strongly connected aggregates: t0 < 1
Suppose the sequence (gk)k>1 grows faster than k!. In this situation, t0 < 1. If

t0 < 1, there is no solution θ(γ, γm) to (93), for (γ, γm) defined in an open neighbor-
hood of the point (1, 1).
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The singularity of function Z2(θ, γ, γm)
def
= 1/(1 − γt(θ, γm)) remains, therefore,

located at the value θ = θ1. Indeed,

Z2(θ, γ, γm) ∼
θ=θ1

1
1− γt0(γm)

(
1− γ(2θ1/(−1/g)′(t0))1/2

1− γt0(γm)

(
1

1− θ/θ1

)−1/2)
.

The singularity of Z2(θ, γ, γm) is algebraic, with parameter α = −1/2. It follows
from the singularity analysis result (66) that

[θn]Z2(θ, γ, γm) ∼
n→∞−

γ

(1− γt0(γm))2

(
2θ1

(−1/g)′(t0)

)1/2 θ−n1 n−3/2

Γ(−1/2)
. (102)

As a result, upon normalizing,

Φ2
n(γ, γm)

def
=

[θn]Z2(θ, γ, γm)
[θn]Z2(θ)

∼
n→∞γ

(
1− t0

1− γt0(γm)

)2

. (103)

Hence

Φ2
n(γ) −→

n→∞ρ
2
∞(γ, γm)

def
= Φ2

∞(γ, γm) (104)

with

ρ2
∞(γ, γm) = γ

(
1− t0

1− γ(t0 + (γm − 1)cmθm1 /m!)

)2

. (105)

As γm = 1, this is the probability generating function of a (shifted) squared
geometric variable, with mean 1 + 2t0/(1− t0)2. The number of clusters random
variable, P (n), converges in law this time. As γ = 1, this is the probability generating
function of a squared geometric variable, Nm(∞), with mean 2cmθm1 /(m!(1 − t0))
(compare with (62)).

5.4. Summary

Let us put altogether the results of this section, concerning the variable P (n) and
Nm(n), given N = n, in the thermodynamic limit n→∞.

Model 1: discernible atoms, indiscernible clusters

Weakly connected aggregates (g entire): In any case, given N = n, Nm(n) −→
n→∞ 0

with P1 probability one, for any finite group-size m held fixed.

– g degree-d polynomial (gk = 0, k > d > 2), P (n) grows like n1/d.

– g ∼ θM exp θ (gk ∼ kM ), P (n) grows like logn.

Strongly connected aggregates (g has a singularity t0 > 1 at finite distance):

– g(θ) = 1/(1− P (θ)) (gk ∼ kkt−k0 ), the random vector (P (n),Nm(n)) converges in
law to a (Poisson) distribution given by (92).
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Model 2: discernible atoms, discernible clusters

Weakly connected aggregates (g entire):

– g degree-d polynomial (gk = 0, k > d), the random vector (P (n),Nm(n)) grows
like n.

– g ∼ θM exp θ (gk ∼ kM ), the random vector (P (n),Nm(n)) grow like n.

There is a non-trivial size-m group structure this time (see, e.g., (93), (97), (98)).

Strongly connected aggregates (g has a singularity t0 > 1 at finite distance):

– g(θ) = 1/(1 − P (θ)) (gk ∼ kkt−k0 ), the random vector (P (n),Nm(n)) still grows
like n. Conclusions are similar to the previous ones.

Very strongly connected aggregates (g has a singularity t0 < 1 at finite distance):

– g(θ) = 1/(1− P (θ)) (gk ∼ kkt−k0 ), the random vector (P (n),Nm(n)) converges in
law to a (squared geometric) distribution given by (105).

In other words, the ratio n/P (n), giving the “average” number of atoms per
cluster can present a great variability, as n → ∞, from infinite to finite, depending
on the pattern formation process. Its behavior strongly influences the fragment size
distribution.

5.5. Large deviation results

Concerning the number of groups’ and the number of size-m groups’ asymptotic,
two regimes can thus be distinguished:

(1) Convergence: this happens if Φn(γ, γm) −→
n→∞ρ∞(γ, γm)

def
= Φ∞(γ, γm) (see,

e.g., (92), (105)). In these situations, the random vector (P (n),Nm(n)) converges in
law to (P (∞),Nm(∞)).

(2) Divergence: this happens if Φn(γ, γm)1/Λn −→
n→∞ρ(γ, γm). Two sub-cases

arise:
(a) If ρ(γ, γm) is defined in a neighborhood of (γ, γm) = (1, 1). In this situation,

we have large deviation results, strongly reminiscent of multifractal theory, that we
now give.

Let λ
def
= − log γ, λm

def
= − log γm, λ

def
= (λ,λm).

Next, define

ς(λ)
def
= ς(λ,λm)

def
= ρ

(
e−λ, e−λm

)
(106)

and the “free energy” function

τ (λ) = τ (λ,λm)
def
= − log ς(λ,λm). (107)

This function is well-known to be concave on its convex definition domain,
λ ∈ Λ, from the Hölder inequality. Domain Λ can be derived from the definition
domain of (γ, γm) and contains the origin λ = 0 = (0, 0).
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Define then its concave Legendre transform

s(α)
def
= s(α,αm)

def
= inf
λ∈Λ

(
αλ− τ (λ)

)
. (108)

Clearly, s(α) = α∇s(α) − τ (∇s(α)) with ∇τ (∇s(α)) = α (here ∇ is the
gradient symbol). Moreover, s(α) 6 0, as α ∈ Ξ, the induced definition domain
on α. Define α0 by ∇s(α0) = 0. Function s(α) attains its maximum, zero, at α0.

In all divergence situations described above, one can show the following local
limit theorem for large deviation result [8,15]:

P
(

1
Λn

X(n)→ α

)1/Λn
−→
n→∞ exp s(α) (109)

with s(α) the large deviation rate function and X(n) the random vector X(n)
def
=

(P (n),Nm(n)).
In particular, we have

1
Λn

X(n)→ α0
def
= ∇τ (0) (110)

with P probability one.
Moreover, if E[X(n)] = Λn∇τ (0) and [X(n)] = Λn∆τ (0) denote, respectively,

the mean and variance–covariance matrix of X(n), we have the central limit theorem

P
([

X(n)
]−1/2(X(n)− E

[
X(n)

])
< x
)
−→
n→∞ erf x (111)

for x = O(1).
(b) If ρ(γ, γm) is independent of γm (section 5.2.1). The above analysis only

holds for the one-dimensional variable P (n). Let us illustrate these points in one-
dimensional situations.

Example 6. In section 5.2.1, we had ρ1(γ) = exp(γ − 1). Therefore, τ (λ) = 1 −
exp(−λ) for λ ∈ R, and s(α) = α− 1−α logα 6 0 for any α ∈ R+. Here s(α0) = 0
at α0 = 1.

In the example of section 5.3.2, we had ρ2(γ, 1) = ρ2(γ) = 5γ3/(6γ2 − 1).
Therefore,

τ (λ)
def
= − log ρ2(e−λ) = − log

(
5e−3λ

6e−2λ − 1

)
for λ 6 λ0 = (1/2) log 2 and its Legendre transform s(α) (which can be explicitly
computed) is only defined in the range α ∈ [0, 1]. Moreover, s(α0) = 0 at α0 = 3/5.
Function s(α) tends to −∞ as α → 1− and s(0) = −λ0 with a positive finite slope
there.
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6. Concluding remarks

This paper presents a statistical physics’ approach to the modeling of nucleation–
aggregation phenomena of atoms. This work was motivated by a need to un-
derstand the fundamentals involved in clusters’ formation processes. In this con-
text, real experimental data have been related to one of the models discussed here
(model (a) of section 2) by Cohen [5–7], in an attempt to understand processes
such as coagulation of fine particles or coalescence of droplets, by considering the
most probable group size distributions that have not been introduced here (see,
also, [4,14]). These vital informations can be reached while maximizing a Boltz-
mann type entropy which turn out to be strongly dependent on the average num-
ber of atoms per cluster ratio n/P (n), whose variability has been shown to be
large.

Two different models have been first developed within this statistical framework,
showing that small causes can produce large effects. These models were designed to
represent simple aggregation by single particle adjunction (monomer addition).

It has also been shown, however, how to include in aggregation models the
possibility for an atom to connect simultaneously to more than one group at the same
time. In this situation, indeed, the number of groups in the transition n→ n+ 1 may
decrease because clusters themselves can coalesce.

These informations are nicely represented by two partition functions of unordered
(and ordered) forests of increasing trees.

In order now to understand these aggregation phenomena, we first derived the
fragment size distributions (that is, the number P of fragments, or clusters, and the
number Nm of size-m fragments with m constitutive atoms), as a function of the
control parameter which is chosen here to be the average number of atoms 〈N〉. As
〈N〉 approaches infinity, we derived the study of these variables in the thermodynamic
limit n→∞.

This formulation has shown that the nucleation and aggregation processes were
in competition, and that macroscopic effects on the clusters number distributions could
emerge. This intuition has received a rigorous positive answer, using singularity analy-
sis techniques of the partition functions involved. This allowed for the distinction be-
tween two regimes: the ones of weakly and strongly connected aggregates. In the first
regime, nucleation dominates aggregation which results in the divergence of the num-
ber of clusters variable, at rates depending on the connection politics of the additional
atoms. In the second regime, on the contrary, this variable attains a macroscopically
observable statistical equilibrium. As the number of atoms n tends to infinity, the
number P (n) of fragments, or clusters, and the number Nm(n) of size-m fragments
have thus been shown to present a great statistical variability under the two different
models introduced.
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